185. Visible Light-induced Oxygen Generation and Cyclic Water Cleavage Sensitized by Porphyrins

by Enrico Borgarello, Kuppuswamy Kalyanasundaram, Yohmei Okuno¹) and Michael Grätzel²)

Institut de chimie physique, Ecole Polytechnique Fédérale, Lausanne, Switzerland

(10.VII.81)

Summary

Zinctetramethylpyridylporphyrin (ZnTMPyP⁴⁺) in acidic aqueous solution sensitizes efficiently oxygen generation by visible light in the presence of acceptors such as Fe³⁺- and Ag⁺-ions and colloidal RuO₂/TiO₂ redox catalyst. Hydrogen and oxygen are cogenerated under visible light illumination of ZnTMPyP⁴⁺ solutions when a bifunctional catalyst (Pt and RuO₂ codeposited onto TiO₂) is employed.

Introduction. – The cleavage of water into hydrogen and oxygen through visible light irradiation of microheterogeneous systems is a fascinating research topic which is presently under intense investigation [1]. Apart from devices where low band gap colloidal semiconductors are employed as light harvesting units [2], the presence of sensitizers is required to achieve photolysis in the visible wavelength region. So far ruthenium complexes, $Ru(bipy)_3^{2+}$ and derivatives, have almost exclusively been employed for that purpose. Clearly, there is a need to enlarge the scope of viable redox chromophors.

Porphyrins appear to be an attractive choice for such water-cleavage sensitizer. The are cheap and easy to synthesize, absorb in the visible spectrum, dispose of long-lived excited states, and their redox potential can be tuned by suitable metal substitution to afford water decomposition. Photochemical reactions of porphyrins have already been widely investigated [3]. We [4] and others [5] have shown that water soluble porphyrins are extremely efficient sensitizers for light-induced hydrogen generation from water. However, these systems have so far been sacrificial in that instead of water an electron donor such as EDTA had been irreversibly consumed in the reaction.

This paper presents for the first time evidence for the redox-catalyzed oxygen generation from water sensitized by zinc porphyrin derivatives. Colloidal RuO_2 deposited onto TiO_2 is used to mediate water oxidation by the Π -cation of the porphyrin (P⁺):

$$4 P^{+} + 2 H_2 O \xrightarrow{\text{RuO}_2} 4 P + 4 H^{+} + O_2$$
 (1)

¹) Visiting scientist from the Faculty of Pharmaceutical Sciences, Hokkaida University, Sapporo, Japan.

²) Author to whom correspondence should be addressed.

Furthermore, the complete cycle of water cleavage sensitzed by porphyrin will be demonstrated.

Experimental. – Zinctetramethylpyridylporphyrin (ZnTMPyP⁴⁺) and zinctetra(-*p*-sulfonato)phenylporphyrin (ZnTPPS⁴⁻) were prepared according to a procedure described earlier [4] [6].

Two types of TiO₂ support materials were employed: the first, TiO₂-P25 (*Degussa*), was kindly supplied to us by Dr. *P. Kleinschmidt, Degussa Zentralforschung*, Hanau, West Germany. This is a flame hydrolyzed material (anatase) characterized by a low surface hydroxyl population, a primary particle diameter of 140 Å and a surface area of 55 m²/g. The second, TiO₂/RuO₂-U (*Sibit, Montedison*, Italy) is produced by acid digestion of titanium sulfate and is not calcined. The material (anatase) is characterized by a very high surface hydroxyl population, a particle size of approx. 500 Å and a surface area of 240 m²/g. It is doped with 0.4% Nb₂O₅ and loaded with 0.1% RuO₂.

Loading of P-25 with RuO₂ was carried out by dispersing the TiO₂ in a RuO₄ solution. The TiO₂ concentration was usually 0.5 g/l and that of RuO₄ adjusted to the amount of loading required. The disperion was illuminated with light > 300 nm for approx. 30 min to bring about decomposition of RuO₄ according to:

$$RuO_4 \xrightarrow{h\nu} RuO_2 + O_2$$
 (2)

The RuO_2 produced precipitates as an ultrafine layer onto the TiO₂ particles. A bifunctional redox catalyst consisting of Pt and RuO₂, codeposited on the TiO₂ particles, was used in cyclic water cleavage experiments. Loading with Pt was carried out after charging with RuO₂ according to a procedure described earlier [7].

Irradiations were performed with 15 ml solutions using a 450 W high-pressure Xe lamp as a light source. UV. and IR. radiation was removed by a 400 nm cut-off filter and a 15 cm water jacket, respectively. Hydrogen was analyzed by gas chromatography using a *Gow Mac* detector, carbosieve column (35°) and N₂ as a carrier gas. The formation of oxygen was measured either directly in the irradiated flask by means of an oxygen-specific electrode or by using the *Teledyne* fuel cell system described earlier [7]. A thermostated cell equipped with a water jacket containing 25 ml solution was employed for experiments at elevated temperature.

Results and Discussion. – Light-induced O_2 generation from water sensitized by water soluble porphyrins was first investigated using either Fe³⁺ or Ag⁺ as electron acceptor. Aqueous solutions of ZnTMPyP⁴⁺ (1.5×10^{-4} M) of pH 1.6 containing Fe³⁺ (2.5×10^{-2} M) and TiO₂-P25 catalyst produced efficiently oxygen under visible light irradiation (*Fig. 1*). Rates of O₂ formation ($r(O_2)$) increase from 15 µl/h to 50 µl/h as

Fig. 1. Effect of RuO₂ loading of the TiO₂ catalyst on the visible light induced oxygen generation from water sensitized by ZnTMPyP⁴⁺ ([ZnTMPyP⁴⁺]=1.5×10⁻⁴ M, [Fe³⁺]=2.5×10⁻² M, pH 1.6, [TiO₂]= 500 mg/l)

the RuO₂ loading of the catalyst increases from 0 to 1%. No oxygen is formed in the absence of TiO₂-P25 catalyst. Decreasing the ZnTMPyP⁴⁺ concentration from 1.5×10^{-4} to 0.7×10^{-4} m results in a twofold decrease in the value of $r(O_2)$.

Increasing the pH to 2.5 lowers $r(O_2)$ by a factor of 5. A similar reduction is found when the pH is decreased to 0.8. Here rapid demetallization of the porphyrin³) renders the results ambiguous. At pH 1.6 the demetallization process does practically not occur during the first 5 hours. Over this period, a total of 7.4×10^{-4} mol/1 O₂ was produced and an equivalent of 3×10^{-3} mol/1 ferric ion reduced corresponding to a turnover number of 20 for the ZnTMPyP⁴⁺.

If Ag⁺ instead of Fe³⁺ is used as an electron acceptor, the optimum pH for lightinduced O₂ generation is found to be around 4.5. At higher pH, precipitation of AgOH takes place. Visible light irradiation of a 15 ml solution $(1.5 \times 10^{-4} \text{ M} \text{ ZnTMPyP}^{4+}, 2.5 \times 10^{-2} \text{ M} \text{ Ag}^+ \text{ and } 500 \text{ mg/l TiO}_2/\text{RuO}_2 (1\%))$ produces O₂ at a rate of 9 µl/h. A black deposit of Ag onto the TiO₂ particles becomes apparent during illumination. Comparison with the decrease in Ag⁺ concentration determined analytically with the amount of O₂ produced showed a ratio of > 3:1, close to the expected stoichiometric 4:1 proportion.

Interestingly, when TiO_2 -U (*Montedison*, anatase) is employed as a support material for RuO₂, efficient Fe³⁺- and Ag⁺-reduction sensitized by ZnTMPyP⁴⁺ takes also place. However, only very small amounts of O₂ which are far below the stoichiometric ratio appear in the gas phase. In this case, the O₂ generated is almost totally bound to the TiO₂ which acts as an O₂ carrier. It can be released from the surface by addition of phosphate to the solution⁴).

Laser photolysis investigations carried out with solutions of ZnTMPyP⁴⁺ and Fe³⁺ showed occurrence of oxidative quenching of the porphyrin triplet state

$$ZnTMPyP^{4+}(T_1) + Fe^{3+} \rightarrow Fe^{2+} + ZnTMPyP^{5+}$$
 (3)

Fig. 2. Transient spectrum obtained from the 530 nm laser photolysis of $ZnTMPyP^{4+}$ $(1 \times 10^{-5} \text{ m})$ in the presence of Fe^{3+} $(2 \times 10^{-3} \text{ m})$ (Points taken 50 µs after the laser pulse)

³) The demetallated porphyrin sensitizes also O_2 generation from water albeit with smaller efficiency.

⁴⁾ This will be treated in detail in a forthcoming paper.

The rate constant k_1 measured by varying Fe³⁺-concentration is 1.3×10^{10} m⁻¹ s⁻¹ and the cage escape yield practically 100% at pH 2 (ionic strength ~ 10^{-2} M). Figure 2 shows the transient spectrum corrected for ground state porphyrin absorption obtained from the 530 nm laser photolysis of ZnTMPyP⁴⁺-solutions in the presence of Fe³⁺. Measurements were taken 50 µs after the laser pulse, *i.e.* after completion of reaction (equ. 3). The spectrum is identical with that of the porphyrin Π -cation radical. ZnTMPyP⁵⁺, for which absolute extinction coefficients were evaluated. The ZnTMPyP⁵⁺ absorption disappears in the millisecond time domain due to back electron transfer to Fe²⁺. The second-order rate constant for this process was evaluated as 5×10^7 M⁻¹ s⁻¹ at pH 2.

On the basis of these observations, we postulate two parallel pathways operative in the light-driven and porphyrin-sensitized O_2 formation from Fe³⁺ (Ag⁺) and water⁵).

$$4 \operatorname{Fe}^{3+} (\operatorname{Ag}^{+}) + 2 \operatorname{H}_{2} O \xrightarrow{hv} 4 \operatorname{Fe}^{2+} (\operatorname{Ag}) + O_{2} + 4 \operatorname{H}^{+} \Delta G^{\circ} = 33.7 \operatorname{kcal/mol} (\operatorname{Fe}^{3+/2+}/\mathrm{pH} 1.6)$$
(4)

The first involves solution quenching of the porphyrin triplet state by Fe^{3+} followed by RuO₂ catalyzed O₂ generation from ZnTMPyP⁵⁺ and water (equ. 1). Evidently, our RuO₂/TiO₂ catalyst is active enough to intercept the back reaction between Fe²⁺ and ZnTMPyP⁵⁺ which occurs in the millisecond time domain. Also, the RuO₂/TiO₂ micro particles appear to intervene specifically, thus avoiding short circuitry of this undesirable back electron transfer.

As a significant fraction of ZnTMPyP⁴⁺ adheres to the surface of TiO₂, one has to envisage a second mechanism of O₂ formation, outlined in *Figure 3*. Here, the excited porphyrin injects a charge in the TiO₂ conduction band. Subsequently, the conduction band electron reduces Fe^{3+} to Fe^{2+} (or Ag⁺ to Ag) while the RuO₂ deposit on the TiO₂ particle catalyzes O₂ formation from the oxidized porphyrin and water⁶). The fact that TiO₂ conduction band electrons are capable of interacting efficiently with Fe^{3+} and Ag⁺ was independently verified by exciting TiO₂-P25 in

Fig.3. Schematic illustration of processes occurring during light induced oxygen generation from Fe^{3+} and water sensitized by $ZnTMPyP^{4+}$

1940

⁵) This reaction stores *ca*. 0.4 eV of the photon energy for each electron transferred (Fe³⁺, pH 1.6).

⁶) The details of RuO₂/TiO₂ catalysis have been investigated recently [8].

the absence of porphyrins with band gap irradiation. The evolution of O_2 and reduction of the acceptor ions is readily apparent under these conditions and will be analyzed in detail in a forthcoming paper.

If the excited state of ZnTMPyP⁴⁺ is capable of electron injection into the TiO₂ conduction band and the porphyrin Π -cation radical can produce O₂ from water, then the operation of a complete water cleavage system should be feasible. We performed this crucial test with a solution of ZnTMPyP⁴⁺ (1.5×10^{-4} M) and TiO₂-P25 (500 mg/l) charged with 1% RuO₂ and 8% Pt (produced *via* citrate reduction of H₂PtCl₆[9]). The latter catalyst is necessary to promote water reduction by TiO₂ conduction band electrons. Irradiation of 15 ml solution with visible light produces H₂ and O₂ at a rate of 15 and 6 µl/h, respectively. This can be sustained over a period of at least 6 hours. No H₂ or O₂ was produced in the absence of porphyrin. Also, the presence of both RuO₂ and Pt was required to achieve water photolysis by visible light [10].

Additional experiments were carried out with the porphyrin ZnTPPS⁴⁻. The former sensitizer does not afford O₂ generation in the presence of either Fe^{3+} or Ag⁺ ions and the TiO₂-P25 catalyst loaded with RuO₂. Also, it is inactive in sensitizing water decomposition in the presence of TiO₂-P25/Pt/RuO₂ bifunctional redox catalyst. This behaviour is attributed to the unfavorable redox potential of ZnTPPS⁴⁻, +870 mV (vs. NHE) as compared to +1180 mV for ZnTMPyP⁴⁺ [11]. Thus, in acidic solution water oxidation by the porphyrin Π -cation is possible only in the case of ZnTMPyP⁴⁺.

In conclusion, the present study establishes the suitability of porphyrins to sensitize O_2 generation from water and to afford visible light induced water cleavage. This opens up a large choice of synthetic possibilities to enhance the adsorption of the porphyrin to the semiconductor particle and to finetune its redox potential in order to improve the performance of these systems.

This work was supported by the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung and the Ciba-Geigy AG, Basel, Switzerland. We are grateful to Dr. M. Visca (Sibit, Montedison, Italy) and Prof. E. Pelizzetti (University of Torino, Italy) for supplying us with TiO₂-U. Also, we thank Dr. P. Kleinschmidt (Degussa, West Germany) for providing us a sample of TiO₂-P25. Y. Okuno thanks the Naito Research Grant 1980 for a traveling grant.

REFERENCES

- A. Fujishima, A. & K. Honda, Nature, 238, 37 (1972); M. Calvin, Photochem. Photobiol. 23, 425 (1976); M. Calvin, Acc. Chem. Res. 11, 369 (1978); V. Balzani, L. Moggi, M. F. Manfrin, F. Boletta & M. Gleria, Science, 189, 852 (1975); K. I. Zamaraev & V. N. Parmon, Catal. Rev. Sci. Eng. 22, 261 (1980); G. Porter & M. D. Archer, Interdisc. Sci. Rev. 1, 119 (1976); J. Bolton, Science, 202, 705 (1978); M. Grätzel, Ber. Bunsenges, Phys. Chem. 84, 981 (1980); J. Kiwi, K. Kalyanasundaram & M. Grätzel, 'Structure and Bonding', 1981; K. Kalyanasundaram & M. Grätzel, Nato Summer School on Photoelectrochemistry, Gent, 1980 (Belgium), Nato Advanced Studies Treatise.
- [2] K. Kalyanasundaram, E. Borgarello & M. Grätzel, Helv. Chim. Acta, 64, 362 (1981).
- [3] G.R. Seely & M. Calvin, J. Chem. Phys. 23, 1068 (1955); G.R. Seely & K. Talmadge, Photochem. Photobiol. 3, 195 (1964); D. Mauzerall, 'The Porphyrins', D. Dolphin, ed., Vol. V, Part c, p. 53, Academic Press, 1978; A. Harriman & G. Porter, J. Chem. Soc. Faraday Transac. II, 75, 1543 (1979); F.R. Hopf & D.G. Whitten, 'Porphyrins and Metalloporphyrins', Smith, K.M. (Ed.); Elsevier, Amsterdam, pp. 667-700 (1975).

- [4] K. Kalyanasundaram & M. Grätzel, Helv. Chim. Acta, 63, 478 (1980).
- [5] G. McLendon & D. Miller, J. Chem. Soc. Chem. Commun 1980, 533; A. Harriman, G. Porter & M.C. Richoux, J. Chem. Soc. Faraday Transac. 2, 77, 833 (1981).
- [6] 'Porphyrins', D. Dolphin, (Ed.), Academic Press (1979).
- [7] D. Duonghong, E. Borgarello & M. Grätzel, J. Am. Chem. Soc. 103, 4685 (1981).
- [8] c.f. R. Humphry-Baker, J. Lilie & M. Grätzel, J. Am. Chem. Soc., in print.
- [9] J. Turkevich, K. Aika, L. L. Ban, I. Okura & S. Namba, J. Res. Inst. Cat. Hokkaido University, 23, 54 (1976); J. Turkevich, 'Electrocatalysis of Fuel Cell Reaction', Brookhaven Symp. Proceedings, p. 123 (1967).
- [10] E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca & M. Grätzel, J. Am. Chem. Soc., in print; J. Kiwi, E. Borgarello, E. Pelizzetti, M. Visca & M. Grätzel, Angew. Chem. Int. Ed. Engl. 19, 646 (1980).
- [11] M. Neumann-Spallart & K. Kalyanasundaram, Z. Naturforsch. 36B, 596 (1981).